Thursday, 11 August 2016

Flatpak cross-compilation support

A couple of weeks ago, I hinted at a presentation that I wanted to do during this year's GUADEC, as a Lightning talk.

Unfortunately, I didn't get a chance to finish the work that I set out to do, encountering a couple of bugs that set me back. Hopefully this will get resolved post-GUADEC, so you can expect some announcements later on in the year.

At least one of the tasks I set to do worked out, and was promptly obsoleted by a nicer solution. Let's dive in.

How to compile for a different architecture

There are four possible solutions to compile programs for a different architecture:

  • Native compilation: get a machine of that architecture, install your development packages, and compile. This is nice when you have fast machines with plenty of RAM to compile on, usually developer boards, not so good when you target low-power devices.
  • Cross-compilation: install a version of GCC and friends that runs on your machine's architecture, but produces binaries for your target one. This is usually fast, but you won't be able to run the binaries created, so might end up with some data created from a different set of options, and won't be able to run the generated test suite.
  • Virtual Machine: you'd run a virtual machine for the target architecture, install an OS, and build everything. This is slower than cross-compilation, but avoids the problems you'd see in cross-compilation.
The final option is one that's used more and more, mixing the last 2 solutions: the QEmu user-space emulator.

Using the QEMU user-space emulator

If you want to run just the one command, you'd do something like:

qemu-static-arm myarmbinary

Easy enough, but hardly something you want to try when compiling a whole application, with library dependencies. This is where binfmt support in Linux comes into play. Register the ELF format for your target with that user-space emulator, and you can run myarmbinary without any commands before it.

One thing to note though, is that this won't work as easily if the qemu user-space emulator and the target executable are built as a dynamic executables: QEmu will need to find the libraries for your architecture, usually x86-64, to launch itself, and the emulated binary will also need to find its libraries.

To solve that first problem, there are QEmu static binaries available in a number of distributions (Fedora support is coming). For the second one, the easiest would be if we didn't have to mix native and target libraries on the filesystem, in a chroot, or container for example. Hmm, container you say.

Running QEmu user-space emulator in a container

We have our statically compiled QEmu, and a filesystem with our target binaries, and switched the root filesystem. Well, you try to run anything, and you get a bunch of errors. The problem is that there is a single binfmt configuration for the kernel, whether it's the normal OS, or inside a container or chroot.

The Flatpak hack

This commit for Flatpak works-around the problem. The binary for the emulator needs to have the right path, so it can be found within the chroot'ed environment, and it will need to be copied there so it is accessible too, which is what this patch will do for you.

Follow the instructions in the commit, and test it out with this Flatpak script for GNU Hello.

$ TARGET=arm ./build.sh
[...]
$ ls org.gnu.hello.arm.xdgapp 
918k org.gnu.hello.arm.xdgapp

Ready to install on your device!

The proper way

The above solution was built before it looked like the "proper way" was going to find its way in the upstream kernel. This should hopefully land in the upcoming 4.8 kernel.

Instead of launching a separate binary for each non-native invocation, this patchset allows the kernel to keep the binary opened, so it doesn't need to be copied to the container.

In short

With the work being done on Fedora's static QEmu user-space emulators, and the kernel feature that will land, we should be able to have a nice tickbox in Builder to build for any of the targets supported by QEmu.

Get cross-compiling!

Tuesday, 9 August 2016

Blog backlog, Post 4, Headset fixes for Dell machines

At the bottom of the release notes for GNOME 3.20, you might have seen the line:
If you plug in an audio device (such as a headset, headphones or microphone) and it cannot be identified, you will now be asked what kind of device it is. This addresses an issue that prevented headsets and microphones being used on many Dell computers.
Before I start explaining what this does, as a picture is worth a thousand words:


This selection dialogue is one you will get on some laptops and desktop machines when the hardware is not able to detect whether the plugged in device is headphones, a microphone, or a combination of both, probably because it doesn't have an impedance detection circuit to figure that out.

This functionality was integrated into Unity's gnome-settings-daemon version a couple of years ago, written by David Henningsson.

The code that existed for this functionality was completely independent, not using any of the facilities available in the media-keys plugin to volume keys, and it could probably have been split as an external binary with very little effort.

After a bit of to and fro, most of the sound backend functionality was merged into libgnome-volume-control, leaving just 2 entry points, one to signal that something was plugged into the jack, and another to select which type of device was plugged in, in response to the user selection. This means that the functionality should be easily implementable in other desktop environments that use libgnome-volume-control to interact with PulseAudio.

Many thanks to David Henningsson for the original code, and his help integrating the functionality into GNOME, Bednet for providing hardware to test and maintain this functionality, and Allan, Florian and Rui for working on the UI notification part of the functionality, and wiring it all up after I abandoned them to go on holidays ;)

Tuesday, 19 July 2016

GUADEC Flatpak contest

I will be presenting a lightning talk during this year's GUADEC, and running a contest related to what I will be presenting.

Contest

To enter the contest, you will need to create a Flatpak for a piece of software that hasn't been flatpak'ed up to now (application, runtime or extension), hosted in a public repository.

You will have to send me an email about the location of that repository.

I will choose a winner amongst the participants, on the eve of the lightning talks, depending on, but not limited to, the difficulty of packaging, the popularity of the software packaged and its redistributability potential.

You can find plenty of examples (and a list of already packaged applications and runtimes) on this Wiki page.

Prize

A piece of hardware that you can use to replicate my presentation (or to replicate my attempts at a presentation, depending ;). You will need to be present during my presentation at GUADEC to claim your prize.

Good luck to one and all!

Tuesday, 21 June 2016

AAA game, indie game, card-board-box

Early bird gets eaten by the Nyarlathotep
 
The more adventurous of you can use those (designed as embeddable) Lua scripts to transform your DRM-free GOG.com downloads into Flatpaks.

The long-term goal would obviously be for this not to be needed, and for online games stores to ship ".flatpak" files, with metadata so we know what things are in GNOME Software, which automatically picks up the right voice/subtitle language, and presents its extra music and documents in the respective GNOME applications.
 
But in the meanwhile, and for the sake of the games already out there, there's flatpak-games. Note that lua-archive is still fiddly.
 
Support for a few Humble Bundle formats (some formats already are), grab-all RPMs and Debs, and those old Loki games is also planned.
 
It's late here, I'll be off to do some testing I think :)

PS: Even though I have enough programs that would fail to create bundles in my personal collection to accept "game donations", I'm still looking for original copies of Loki games. Drop me a message if you can spare one!

Wednesday, 25 May 2016

Blog backlog, Post 3, DisplayLink-based USB3 graphics support for Fedora

Last year, after DisplayLink released the first version of the supporting tools for their USB3 chipsets, I tried it out on my Dell S2340T.

As I wanted a clean way to test new versions, I took Eric Nothen's RPMs, and updated them along with newer versions, automating the creation of 32- and 64-bit x86 versions.

The RPM contains 3 parts, evdi, a GPLv2 kernel module that creates a virtual display, the LGPL library to access it, and a proprietary service which comes with "firmware" files.

Eric's initial RPMs used the precompiled libevdi.so, and proprietary bits, compiling only the kernel module with dkms when needed. I changed this, compiling the library from the upstream repository, using the minimal amount of pre-compiled binaries.

This package supports quite a few OEM devices, but does not work correctly with Wayland, so you'll need to disable Wayland support in /etc/gdm/custom.conf if you want it to work at the login screen, and without having to restart the displaylink.service systemd service after logging in.


 Plugged in via DisplayPort and USB (but I can only see one at a time)


The source for the RPM are on GitHub. Simply clone and run make in the repository to create 32-bit and 64-bit RPMs. The proprietary parts are redistributable, so if somebody wants to host and maintain those RPMs, I'd be glad to pass this on.

Friday, 13 May 2016

Blutella, a Bluetooth speaker receiver

Quite some time ago, I was asked for a way to use the AV amplifier (which has a fair bunch of speakers connected to it) in our living-room that didn't require turning on the TV to choose a source.

I decided to try and solve this problem myself, as an exercise rather than a cost saving measure (there are good-quality Bluetooth receivers available for between 15 and 20€).

Introducing Blutella



I found this pot of Nutella in my travels (in Europe, smaller quantities are usually in a jar that looks like a mustard glass, with straight sides) and thought it would be a perfect receptacle for a CHIP, to allow streaming via Bluetooth to the amp. I wanted to make a nice how-to for you, dear reader, but best laid plans...

First, the materials:
  • a CHIP
  • jar of Nutella, and "Burnt umber" acrylic paint
  • micro-USB to USB-A and jack 3.5mm to RCA cables
  • Some white Sugru, for a nice finish around the cables
  • bit of foam, a Stanley knife, a CD marker

That's around 10€ in parts (cables always seem to be expensive), not including our salvaged Nutella jar, and the CHIP itself (9$ + shipping).

You'll start by painting the whole of the jar, on the inside, with the acrylic paint. Allow a couple of days to dry, it'll be quite thick.

So, the plan that went awry. Turns out that the CHIP, with the cables plugged in, doesn't fit inside this 140g jar of Nutella. I also didn't make the holes exactly in the right place. The CHIP is tiny, but not small enough to rotate inside the jar without hitting the side, and the groove to screw the cap also have only one position.

Anyway, I pierced two holes in the lid for the audio jack and the USB charging cable, stuffed the CHIP inside, and forced the lid on so it clipped on the jar's groove.

I had nice photos with foam I cut to hold the CHIP in place, but the finish isn't quite up to my standards. I guess that means I can attempt this again with a bigger jar ;)

The software

After flashing the CHIP with Debian, I logged in, and launched a script which I put together to avoid either long how-tos, or errors when I tried to reproduce the setup after a firmware update and reset.

The script for setting things up is in the CHIP-bluetooth-speaker repository. There are a few bugs due to drivers, and lack of integration, but this blog is the wrong place to track them, so check out the issues list.

Apart from those driver problems, I found the integration between PulseAudio and BlueZ pretty impressive, though I wish there was a way for the speaker to reconnect to the phone I streamed from when turned on again, as Bluetooth speakers and headsets do, removing one step from playing back audio.

Monday, 9 May 2016

Blog backlog, Post 2, xdg-app bundles


I recently worked on creating an xdg-app bundle for GNOME Videos, aka Totem, so it would be built along with other GNOME applications, every night, and made available via the GNOME xdg-app repositories.

There's some functionality that's not working yet though:
  • No support for optical discs
  • The MPRIS plugin doesn't work as we're missing dbus-python (I'm not sure that the plugin will survive anyway, it's more suited to audio players, don't worry though, it's not going to be removed until we have made changes to the sound system in GNOME)
  • No libva/VDPAU hardware acceleration (which would require plugins, and possibly device access of some sort)
However, I created a bundle that extends the freedesktop runtime, that contains gst-libav. We'll need to figure out a way to distribute it in a way that doesn't cause problems for US hosts.

As we also have a recurring problem in Fedora with rpmfusion being out of date, and I sometimes need a third-party movie player to test things out, I put together an mpv manifest, which is the only MPlayer-like with a .desktop and a GUI when launched without any command-line arguments.

Finally, I put together a RetroArch bundle for research into a future project, which uncovered the lack of joystick/joypad support in the xdg-app sandbox.

Hopefully, those few manifests will be useful to other application developers wanting to distribute their applications themselves. There are some other bundles being worked on, and that can be used as examples, linked to in the Wiki.