Showing posts with label libfprint. Show all posts
Showing posts with label libfprint. Show all posts

Monday, 14 August 2023

New responsibilities

As part of the same process outlined in Matthias Clasen's "LibreOffice packages" email, my management chain has made the decision to stop all upstream and downstream work on desktop Bluetooth, multimedia applications (namely totem, rhythmbox and sound-juicer) and libfprint/fprintd. The rest of my upstream and downstream work will be reassigned depending on Red Hat's own priorities (see below), as I am transferred to another team that deals with one of a list of Red Hat’s priority projects.

I'm very disappointed, because those particular projects were already starved for resources: I spent less than 10% of my work time on them in the past year, with other projects and responsibilities taking most of my time.

This means that, in the medium-term at least, all those GNOME projects will go without a maintainer, reviewer, or triager:
- gnome-bluetooth (including Settings panel and gnome-shell integration)
- totem, totem-pl-parser, gom
- libgnome-volume-control
- libgudev
- geocode-glib
- gvfs AFC backend

Those freedesktop projects will be archived until further notice:
- power-profiles-daemon
- switcheroo-control
- iio-sensor-proxy
- low-memory-monitor

I will not be available for reviewing libfprint/fprintd, upower, grilo/grilo-plugins, gnome-desktop thumbnailer sandboxing patches, or any work related to XDG specifications.

Kernel work, reviews and maintenance, including recent work on SteelSeries headset and Logitech devices kernel drivers, USB revoke for Flatpak Portal support, or core USB is suspended until further notice.

All my Fedora packages were orphaned about a month and a half ago, it's likely that there are still some that are orphaned, if there are takers. RHEL packages were unassigned about 3 weeks ago, they've been reassigned since then, so I cannot point to the new maintainer(s).

If you are a partner, or a customer, I would recommend that you get in touch with your Red Hat contacts to figure out what the plan is going forward for the projects you might be involved with.

If you are a colleague that will take on all or part of the 90% of the work that's not being stopped, or a community member that was relying on my work to further advance your own projects, get in touch, I'll do my best to accommodate your queries, time permitting.

I'll try to make sure to update this post, or create a new one if and when any of the above changes.

Wednesday, 1 April 2020

PAM testing using pam_wrapper and dbusmock

On the road to libfprint and fprintd 2.0, we've been fixing some long-standing bugs, including one that required porting our PAM module from dbus-glib to sd-bus, systemd's D-Bus library implementation.

As you can imagine, I have confidence in my ability to write bug-free code at the first attempt, but the foresight to know that this code will be buggy if it's not tested (and to know there's probably a bug in the tests if they run successfully the first time around). So we will have to test that PAM module, thoroughly, before and after the port.

Replacing fprintd

First, to make it easier to run and instrument, we needed to replace fprintd itself. For this, we used dbusmock, which is both a convenience Python library and way to write instrumentable D-Bus services, and wrote a template. There are a number of existing templates for a lot of session and system services, in case you want to test the integration of your code with NetworkManager, low-memory-monitor, or any number of other services.

We then used this to write tests for the command-line utilities, so we can both test our new template and test the command-line utilities themselves.

Replacing gdm

Now that we've got a way to replace fprintd and a physical fingerprint reader, we should write some tests for the (old) PAM module to replace sudo, gdm, or the login authentication services.

Co-workers Andreas Schneier and Jakub Hrozek worked on pam_wrapper, an LD_PRELOAD library to mock the PAM library, and Python helpers to write simple PAM services. This LWN article explains how to test PAM applications, and PAM modules.

After fixing a few bugs in pam_wrapper, and combining with the fprintd dbusmock work above, we could wrap and test the fprintd PAM module like it never was before.

Porting to sd-bus

Finally, porting the PAM module to sd-bus was pretty trivial, a loop of 1) writing tests that work against the old PAM module, 2) porting a section of the code (like the fingerprint reader enumeration, or the timeout support), and 3) testing against the new sd-bus based code. The result was no regressions that we could test for.

Conclusion

Both dbusmock, and pam_wrapper are useful tools in your arsenal to write tests, and given those (fairly) easy to use CIs in GNOME and FreeDesktop.org's GitLabs, it would be a shame not to.

You might also be interested in umockdev, to mock a number of device types, and mocklibc (which combined with dbusmock powers polkit's unattended CI)

Thursday, 8 August 2019

libfprint 1.0 (and fprintd 0.9.0)

After more than a year of work libfprint 1.0 has just been released!

It contains a lot of bug fixes for a number of different drivers, which would make it better for any stable or unstable release of your OS.

There was a small ABI break between versions 0.8.1 and 0.8.2, which means that any dependency (really just fprintd) will need to be recompiled. And it's good seeing as we also have a new fprintd release which also fixes a number of bugs.

Benjamin Berg will take over maintenance and development of libfprint with the goal of having a version 2 in the coming months that supports more types of fingerprint readers that cannot be supported with the current API.

From my side, the next step will be some much needed modernisation for fprintd, both in terms of code as well as in the way it interacts with users.

Friday, 14 December 2018

The tools of libfprint

libfprint, the fingerprint reader driver library, is nearing a 1.0 release.

Since the last time I reported on the status of the library, we've made some headway modernising the library, using a variety of different tools. Let's go through them and how they were used.

Callcatcher

When libfprint was in its infancy, Daniel Drake found the NBIS fingerprint processing library matched what was required to provide fingerprint matching algorithms, and imported it in libfprint. Since then, the code in this copy-paste library in libfprint stayed the same. When updating it to the latest available version (from 2015 rather than 2007), as well as splitting off a patch to make it easier to update the library again in the future, I used Callcatcher to cull the unused functions.

Callcatcher is not a "production-level" tool (too many false positives, lack of support for many common architectures, etc.), but coupled with manual checking, it allowed us to greatly reduce the number of functions in our copy, so they weren't reported when using other source code quality checking tools.

LLVM's scan-build

This is a particularly easy one to use as its use is integrated into meson, and available through ninja scan-build. The output of the tool, whether on stderr, or on the HTML pages, is pretty similar to Coverity's, but the tool is free, and easily integrated into a CI (once you've fixed all the bugs, obviously). We found plenty of possible memory leaks and unintialised variables using this, with more flexibility than using Coverity's web interface, and avoiding going through hoops when using its "source code check as a service" model.

cflow and callgraph

LLVM has another tool, called callgraph. It's not yet integrated into meson, which was a bit of a problem to get some output out of it. But combined with cflow, we used it to find where certain functions were called, trying to find the origin of some variables (whether they were internal or device-provided for example), which helped with implementing additional guards and assertions in some parts of the library, in particular inside the NBIS sub-directory.

0.99.0 is out

We're not yet completely done with the first pass at modernising libfprint and its ecosystem, but we released an early Yule present with version 0.99.0. It will be integrated into Fedora after the holidays if the early testing goes according to plan.

We also expect a great deal from our internal driver API reference. If you have a fingerprint reader that's unsupported, contact your laptop manufacturer about them providing a Linux driver for it and point them at this documentation.

A number of laptop vendors are already asking their OEM manufacturers to provide drivers to be merged upstream, but a little nudge probably won't hurt.

Happy holidays to you all, and see you for some more interesting features in the new year.

Tuesday, 12 June 2018

Fingerprint reader support, the second coming

Fingerprint readers are more and more common on Windows laptops, and hardware makers would really like to not have to make a separate SKU without the fingerprint reader just for Linux, if that fingerprint reader is unsupported there.

The original makers of those fingerprint readers just need to send patches to the libfprint Bugzilla, I hear you say, and the problem's solved!

But it turns out it's pretty difficult to write those new drivers, and those patches, without an insight on how the internals of libfprint work, and what all those internal, undocumented APIs mean.

Most of the drivers already present in libfprint are the results of reverse engineering, which means that none of them is a best-of-breed example of a driver, with all the unknown values and magic numbers.

Let's try to fix all this!

Step 1: fail faster

When you're writing a driver, the last thing you want is to have to wait for your compilation to fail. We ported libfprint to meson and shaved off a significant amount of time from a successful compilation. We also reduced the number of places where new drivers need to be declared to be added to the compilation.

Step 2: make it clearer

While doxygen is nice because it requires very little scaffolding to generate API documentation, the output is also not up to the level we expect. We ported the documentation to gtk-doc, which has a more readable page layout, easy support for cross-references, and gives us more control over how introductory paragraphs are laid out. See the before and after for yourselves.

Step 3: fail elsewhere

You created your patch locally, tested it out, and it's ready to go! But you don't know about git-bz, and you ended up attaching a patch file which you uploaded. Except you uploaded the wrong patch. Or the patch with the right name but from the wrong directory. Or you know git-bz but used the wrong commit id and uploaded another unrelated patch. This is all a bit too much.

We migrated our bugs and repository for both libfprint and fprintd to Freedesktop.org's GitLab. Merge Requests are automatically built, discussions are easier to follow!

Step 4: show it to me

Now that we have spiffy documentation, unified bug, patches and sources under one roof, we need to modernise our website. We used GitLab's CI/CD integration to generate our website from sources, including creating API documentation and listing supported devices from git master, to reduce the need to search the sources for that information.

Step 5: simplify

This process has started, but isn't finished yet. We're slowly splitting up the internal API between "internal internal" (what the library uses to work internally) and "internal for drivers" which we eventually hope to document to make writing drivers easier. This is partially done, but will need a lot more work in the coming months.

TL;DR: We migrated libfprint to meson, gtk-doc, GitLab, added a CI, and are writing docs for driver authors, everything's on the website!