Showing posts with label power-profiles-daemon. Show all posts
Showing posts with label power-profiles-daemon. Show all posts

Monday, 14 August 2023

New responsibilities

As part of the same process outlined in Matthias Clasen's "LibreOffice packages" email, my management chain has made the decision to stop all upstream and downstream work on desktop Bluetooth, multimedia applications (namely totem, rhythmbox and sound-juicer) and libfprint/fprintd. The rest of my upstream and downstream work will be reassigned depending on Red Hat's own priorities (see below), as I am transferred to another team that deals with one of a list of Red Hat’s priority projects.

I'm very disappointed, because those particular projects were already starved for resources: I spent less than 10% of my work time on them in the past year, with other projects and responsibilities taking most of my time.

This means that, in the medium-term at least, all those GNOME projects will go without a maintainer, reviewer, or triager:
- gnome-bluetooth (including Settings panel and gnome-shell integration)
- totem, totem-pl-parser, gom
- libgnome-volume-control
- libgudev
- geocode-glib
- gvfs AFC backend

Those freedesktop projects will be archived until further notice:
- power-profiles-daemon
- switcheroo-control
- iio-sensor-proxy
- low-memory-monitor

I will not be available for reviewing libfprint/fprintd, upower, grilo/grilo-plugins, gnome-desktop thumbnailer sandboxing patches, or any work related to XDG specifications.

Kernel work, reviews and maintenance, including recent work on SteelSeries headset and Logitech devices kernel drivers, USB revoke for Flatpak Portal support, or core USB is suspended until further notice.

All my Fedora packages were orphaned about a month and a half ago, it's likely that there are still some that are orphaned, if there are takers. RHEL packages were unassigned about 3 weeks ago, they've been reassigned since then, so I cannot point to the new maintainer(s).

If you are a partner, or a customer, I would recommend that you get in touch with your Red Hat contacts to figure out what the plan is going forward for the projects you might be involved with.

If you are a colleague that will take on all or part of the 90% of the work that's not being stopped, or a community member that was relying on my work to further advance your own projects, get in touch, I'll do my best to accommodate your queries, time permitting.

I'll try to make sure to update this post, or create a new one if and when any of the above changes.

Wednesday, 17 August 2022

Speeding up the kernel testing loop

When I create kernel contributions, I usually rely on a specific hardware, which makes using a system on which I need to deploy kernels too complicated or time-consuming to be worth it. Yes, I'm an idiot that hacks the kernel directly on their main machine, though in my defense, I usually just need to compile drivers rather than full kernels.

But sometimes I work on a part of the kernel that can't be easily swapped out, like the USB sub-system. In which case I need to test out full kernels.

I usually prefer compiling full kernels as RPMs, on my Fedora system as it makes it easier to remove old test versions and clearly tag more information in the changelog or version numbers if I need to.

Step one, build as non-root

First, if you haven't already done so, create an ~/.rpmmacros file (I know...), and add a few lines so you don't need to be root, or write stuff in /usr to create RPMs.

$ cat ~/.rpmmacros
%_topdir        /home/hadess/Projects/packages
%_tmppath        %{_topdir}/tmp

Easy enough. Now we can use fedpkg or rpmbuild to create RPMs. Don't forget to run those under “powerprofilesctl launch” to speed things up a bit.

Step two, build less

We're hacking the kernel, so let's try and build from upstream. Instead of the aforementioned fedpkg, we'll use “make binrpm-pkg” in the upstream kernel, which builds the kernel locally, as it normally would, and then packages just the binaries into an RPM. This means that you can't really redistribute the results of this command, but it's fine for our use.

 If you choose to build a source RPM using “make rpm-pkg”, know that this one will build the kernel inside rpmbuild, this will be important later.

 Now that we're building from the kernel sources, that's our time to activate the cheat code. Run “make localmodconfig”. It will generate a .config file containing just the currently loaded modules. Don't forget to modify it to include your new driver, or driver for a device you'll need for testing.

Step three, build faster

If running “make rpm-pkg” is the same as running “make ; make modules” and then packaging up the results, does that mean that the “%{?_smp_mflags}” RPM macro is ignored, I make you ask rhetorically. The answer is yes. “make -j16 rpm-pkg”. Boom. Faster.

Step four, build fasterer

As we're building in the kernel tree locally before creating a binary package, already compiled modules and binaries are kept, and shouldn't need to be recompiled. This last trick can however be used to speed up compilation significantly if you use multiple kernel trees, or need to clean the build tree for whatever reason. In my tests, it made things slightly slower for a single tree compilation.

$ sudo dnf install -y ccache
$ make CC="ccache gcc" -j16 binrpm-pkg

Easy.

And if you want to speed up the rpm-pkg build:

$ cat ~/.rpmmacros
[...]
%__cc            ccache gcc
%__cxx            ccache g++

More information is available in Speeding Up Linux Kernel Builds With Ccache.

Step five, package faster

Now, if you've implemented all this, you'll see that the compilation still stops for a significant amount of time just before writing “Wrote kernel...rpm”. A quick look at top will show a single CPU core pegged to 100% CPU. It's rpmbuild compressing the package that you will just install and forget about.

$ cat ~/.rpmmacros
[...]
%_binary_payload    w2T16.xzdio

More information is available in Accelerating Ceph RPM Packaging: Using Multithreaded Compression.

TL;DR and further work

All those changes sped up the kernel compilation part of my development from around 20 minutes to less than 2 minutes on my desktop machine.

$ cat ~/.rpmmacros
%_topdir        /home/hadess/Projects/packages
%_tmppath        %{_topdir}/tmp
%__cc            ccache gcc
%__cxx            ccache g++
%_binary_payload    w2T16.xzdio


$ powerprofilesctl launch make CC="ccache gcc" -j16 binrpm-pkg

I believe there's still significant speed ups that could be done, in the kernel, by parallelising some of the symbols manipulation, caching the BTF parsing for modules, switching the single-threaded vmlinux bzip2 compression, and not generating a headers RPM (note: tested this last one, saves 4 seconds :)

 

The results of my tests. YMMV, etc.

Command Time spent Notes
koji build --scratch --arch-override=x86_64 f36 kernel.src.rpm 129 minutes It's usually quicker, but that day must have been particularly busy
fedpkg local 70 minutes No rpmmacros changes except setting the workdir in $HOME
powerprofilesctl launch fedpkg local 25 minutes
localmodconfig / bin-rpmpkg 19 minutes Defaults to "-j2"
localmodconfig -j16 / bin-rpmpkg 1:48 minutes
powerprofilesctl launch localmodconfig ccache -j16 / bin-rpmpkg 7 minutes Cold cache
powerprofilesctl launch localmodconfig ccache -j16 / bin-rpmpkg 1:45 minutes Hot cache
powerprofilesctl launch localmodconfig xzdio -j16 / bin-rpmpkg 1:20 minutes

Thursday, 5 August 2021

power-profiles-daemon: Follow-up

Just about a year after the original announcement, I think it's time to see the progress on power-profiles-daemon.

Note that I would still recommend you read the up-to-date project README if you have questions about why this project was necessary, and why a new project was started rather than building on an existing one.

 The project was born out of the need to make a firmware feature available to end-users for a number of lines of Lenovo laptops for them to be fully usable on Fedora. For that, I worked with Mark Pearson from Lenovo, who wrote the initial kernel support for the feature and served as our link to the Lenovo firmware team, and Hans de Goede, who worked on making the kernel interfaces more generic.

More generic, but in a good way

 With the initial kernel support written for (select) Lenovo laptops, Hans implemented a more generic interface called platform_profile. This interface is now the one that power-profiles-daemon will integrate with, and means that it also supports a number of Microsoft Surface, HP, Lenovo's own Ideapad laptops, and maybe Razer laptops soon.

 The next item to make more generic is Lenovo's "lap detection" which still relies on a custom driver interface. This should be soon transformed into a generic proximity sensor, which will mean I get to work some more on iio-sensor-proxy.

Working those interactions

 power-profiles-dameon landed in a number of distributions, sometimes enabled by default, sometimes not enabled by default (sigh, the less said about that the better), which fortunately meant that we had some early feedback available.

 The goal was always to have the user in control, but we still needed to think carefully about how the UI would look and how users would interact with it when a profile was temporarily unavailable, or the system started a "power saver" mode because battery was running out.

 The latter is something that David Redondo's work on the "HoldProfile" API made possible. Software can programmatically switch to the power-saver or performance profile for the duration of a command. This is useful to switch to the Performance profile when running a compilation (eg. powerprofilesctl jhbuild --no-interact build gnome-shell), or for gnome-settings-daemon to set the power-saver profile when low on battery.

 The aforementioned David Redondo and Kai Uwe Broulik also worked on the KDE interface to power-profiles-daemon, as Florian Müllner implemented the gnome-shell equivalent.

Promised by me, delivered by somebody else :)

 I took this opportunity to update the Power panel in Settings, which shows off the temporary switch to the performance mode, and the setting to automatically switch to power-saver when low on battery.

Low-Power, everywhere

 Talking of which, while it's important for the system to know that they're targetting a power saving behaviour, it's also pretty useful for applications to try and behave better.
 
 Maybe you've already integrated with "low memory" events using GLib, but thanks to Patrick Griffis you can be an event better ecosystem citizen and monitor whether the system is in "Power Saver" mode and adjust your application's behaviour.
 
 This feature will be available in GLib 2.70 along with documentation of useful steps to take. GNOME Software will already be using this functionality to avoid large automated downloads when energy saving is needed.

Availability

 The majority of the above features are available in the GNOME 41 development branches and should get to your favourite GNOME-friendly distribution for their next release, such as Fedora 35.

Thursday, 10 September 2020

power-profiles-daemon: new project announcement

Despite what this might look like, I don't actually enjoy starting new projects: it's a lot easier to clean up some build warnings, or add a CI, than it is to start from an empty directory.

But sometimes needs must, and I've just released version 0.1 of such a project. Below you'll find an excerpt from the README, which should answer most of the questions. Please read the README directly in the repository if you're getting to this blog post more than a couple of days after it was first published.

Feel free to file new issues in the tracker if you have ideas on possible power-saving or performance enhancements. Currently the only supported “Performance” mode supported will interact with Intel CPUs with P-State support. More hardware support is planned.

TLDR; this setting in the GNOME 3.40 development branch soon, Fedora packages are done, API docs available: